NEW From Cancelled Project!
Using “excess air + solid sulfur” incineration process, the obtained sulfur dioxide gas concentration is about 12%~15%. Control the reasonable sulfur incineration temperature to ensure complete combustion of sulfur.
Using our proprietary technology for solid sulfur feed system, so that the sulfur incinerator temperature is stable, the sublimation sulfur is less in the flue gas. The plant is designed with negative pressure air blowing system, which has good operating environment, and sulfur yield is high.
Using automatic continuous discharging centrifuge, which is a continuous automatic operation, is safe and reliable, saving manpower.
The low concentration sulfuric acid waste liquid is used for production of Magnesium Sulfate products, so the plant has no waste liquid effluent discharge.
Perfect design of exhaust gas treatment. In the waste gas, SO2 concentration is less than 50mg/Nm3(SO2≤50mg/Nm3).
The air is filtration by air filter, and then is feed into air compressor, the air is compressed by air compressor and is feed into sulfur incinerator, the air burning with solid sulfur and obtain sulfur dioxide gas (SO2).
The solid sulfur is fed into sulfur incinerator by solid sulfur feeder, the solid sulfur is mixed with air and burning in the sulfur incinerator, and obtain sulfur dioxide gas (SO2), and release a lot of heat at the same time.
S + O2 = SO2 + Q
A part of sulfur dioxide reaction with oxygen and get sulfur trioxide.
2SO2 + O2 = 2SO3 -Q
After burning, the hot flue gas is enter the flue gas buffer tank, and then is enter the cooling pipe, using circulating water to cooling the flue gas, the flue gas is cooling to 50~60℃ and then is feed into flue gas scrubber, through bubble washing to remove SO3 of flue gas. After the flue gas scrubber, using stage of separator to separation and removal of entrained droplets of flue gas. The scrubbing obtained dilute sulfuric acid is collected and used to produce Magnesium Sulfate by-product. The purified sulfur dioxide gas is sent (through pipeline) to sodium Metabisulfite synthesis section.
SO3 + H2O = H2SO4
Put solid soda ash (Na2CO3) into the soda ash batching kettle of sodium Metabisulfite synthesis section, add water and mother liquor (the filter liquor) of sodium Metabisulfite centrifuge and mixed into suspension, and then pumping the suspension into sodium Metabisulfite synthesis reactors, and feeds clean sulfur dioxide gas successively into the first stage, second stage and third stage synthesis reactors, after synthesis reaction, get sodium Metabisulfite suspension in the first stage synthesis reactor. The reaction tail gas is discharged from the third stage synthesis reactor, and is lead into the scrubbing tower for treatment.
Na2CO3 + 2SO2 = Na2S2O5 + CO2
The Sodium Metabisulfite suspension is discharged from the first stage synthesis reactor and stored into slurry tank, and then from the slurry tank feed into centrifugal, through centrifugal separation and get wet solid Sodium Metabisulfite, which is content 3~5% water, feed the wet Sodium Metabisulfite into hot air dryer (airflow drier), and through cyclone separators, get Sodium Metabisulfite products. The filtrate is collected into the acid mother liquor tank, reused for soda ash solution batching kettle. The drying use hot air comes from the waste heat recovery jacket of sulfur incinerator. After drying, the tail gas is send into tail gas absorption column.
The tail gas countercurrent contact with soda ash solution, the sulfur dioxide gas in the tail gas was absorbed by soda ash solution, the tail gas was cleaned and emptying **(SO2≤50mg/Nm3)**. The absorption solution reused for soda ash solution batching.
In the flue gas scrubber of sulfite dioxide purification section, the sulfite trioxide is absorbed by water and get concentration of 50~60% dilute sulfuric acid liquid waste, which is used to produce Magnesium sulfate heptahydrate by-products.
MgO + H2SO4 + 6H2O = MgSO4·7H2O